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ABSTRACT
Density matrix components are determined for a wave functiom
of muiticonfiguration type. The array containing information
required éo obtain the two-electron change density matrix can
also be used to construct the N-electron (spin-free) hamiltonian
configuration interacgion matrix from the two«électron reduced
hamiltonian matrix. This array can be obtained in several ways

and suggests a useful conceptual organization.
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Tatroduction

it is well kaowa that reduced density matrices provide a
good way of interpreting many-electron wsvefunctions., This may be
a specific wavefunction for a particular system or a general
ﬁavefunction of some type. The density matrix (DM) is particularly
useful in ccmpuriag funcrions of difierent types. 1t may be
pessible on the basis of 'a deasity matrix 4nalysis tc make rather
general statements about the description any wavefunction of a
particular type csn make, as in the case of a spin-projected
different orbitals for different spins dngde ﬂeterminant.ﬁ’s ‘

The.density matrix formulation may also facilitate caiculatioun

by suggesting an organization which is not apparent from the
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wavefunction itself, In fact, it would be desirable to work
with the density matrix directly, without involving an N~electronm
wave function., To do so would require a solution of the
N~representability problem,a a goal which has thus far remained
ellusive. One possibility is to construct an N-representable
density matrix, containing variational parameters, from a wavefunction
of some type, and to work with it. The function is of course
implicitly determined., but need not appear explicitly at any time.
Experience with two~electron calculations shows thar it is
desirable to include No explicitly in a variational fuaction.
One would thus wish to use E2~containing geminals in expanding
the 2-matrix. Obvicusly, however, only a finite number of geminals

will be used and thus the rank of the 2-matrix will be finite., It
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can be proven for zlil odd N> and is conjected for even N2,

with no knowa counter examples but as yet no proof, that the rank
: ., Finit - . . .
of the 1 -matrix is ?f and only 1f the rank of the 2 matrix

is finite. Introduction of 32 geminals iato the Z-matrix

produces a l-matrix of infiutre rank. It thus seems neceszary
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either to be satisfied with zpproxinate Nevepresentabilic T

T

to use geminals leading to a l=-matrix of finitfe rank,
When the one-rank is finite, an expausion of the wave fuanction
in terms of a finite number determinants iz possible. Une is
thus lead to consider a configuratioa-interacticon (CI} ox
PN . . s \ . 12 . , B
optimized wulticonfiguration (OMC) function. The conventional
CI treatment is straightforward, but very many terms are required

to give good results, It is hoped that by optimizing orbitals as

will a relatively small number of configurations will suffice.

Density Matrix Components

The one~ and two-electron reduced deunsity matrices are given

in the I'dwden normalization by
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where as usual x, stands for the space aad spin coordinates of
i

electron i. These density matrices can be rescived ianto spin



3,.'.’.3--16F

componernts. or exampie, if Y 4s an eigenfunction of SZ
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Bio)B (c':lis equivalent to the usual one electrou éz when Y is
cousidered as an operatsr or matrix.
The change *density wmatrix
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and the spin density matrix
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which vanishes identically if M(; G, are the irreducible spin-
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tensoral compomenis of v,

A similar resolution of I is possible,
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The only component with which we need be particularly conceruned
is the two-electron change density matrix

re = P++++ N 1_,+-+- N T-+-'+ ¥ r'jnn-'“n (7)



The integral operator of which [ ®is the kerual acts on two-electron

s 1 ; . ) s N " O
spatizl funcrions ¢r geminals and commutes with P Thus [

12°
will have zero matrix elements between symmetric and anti symmetric
N ¥
geminals.
it is convenient to ifatroduce 3 set of ortho normal urbitals
{ ¢.}in termes of which the wave function and density matrix
i

components can ve expanded. Sywmerric and antisymuetric geminals

are then formed as
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In this basis I'° can be expressed
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This decomposition is of course independent of the particular
basis chosen.
If the hamiltonian for the N-electron system 1s made up of

one~ and two-electron terms

H =) ¢y + § gtij) (11)
i i<j



Then a reduced hamiltonian Hr can be defined as

Hoo= f [$i4) + (207 + g42)
r N-4

with the property that the energy of the system is given by
E = tr{H T} (12)

P . N R N xe)
If H and thus Hr are spin free, I' can be replaced by I'",  The

reduced hamilvouian is a symmetric two-particlie operator commuting

with P12 also, and thus

S S

E = tr{H I°} = tr{H T"} + triH %) (13) -

This separation of E into contributicns from symmetric and
antisymmetric components is clearly related to D. W. Smith's
separation into E” and El. 18 in the present case, it is clear
that the antisymmetric geminals involve a symmetry-induced
correlation-like effect corresponding to the Fermi hole, while no
such effect is essentially present for the symmetric gewminals. Iﬁ

fact the two decompositions are related by
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If one is concerned with computational aspects, further
s a
advantage can be taken of the fact thatzl and E_, as well as_H

are symmetric matrices.



In general they are hermitian, but in practice they will normally be

real)
Tj,kl ) Fzz,q
X = aor s (15)
H?j,k: - Hii,ij

The arrays and trace operation can also be linearized to give expressiouns

of the form.
E =) HT (16)
u

This process is straightforward and welktknown, so we will unot give

details here.

Multiconfiguratioa Functions.

A multiconfiguration (MC) wavefunction of the type being con-

sidered here can be written as
y o= ) C.0. (17)
i
where the single index i stands for a set of indices 1 = (KLj), and

- (18)
®i = ATKLQJK

is the antisymmetrized product of a spatial part T K‘»and a spin
part. We will not consider explicitly any symmetries other
than séin and permutational, but of course orbital angular momentum
or molecular poiant group symmetry can be treated,

The spatial function involves kKdoubly cccupied orbitals with
indices ki ‘o kK’ and A singly occupied orbitals with indices

7, ... ZX' cleariy 2k + A = N . The indices K and L



stand for the sets {k .} and{zri}respectively:

(19)
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The spin function is then taken as
A K L (A)
8. = (aB)" 6.
ik B i (20)

where ejhfg the jth spin eigenfunction for the last A electrons
with the desired S§ and MS values. The antisymmetrized product ®i
is then a spin eigenfunction with the same quantum numbers. The
results are essentially independent of how the spin eigenfunctions
are chosen, so long as a complete set is used. 1t is convenient
for some purposes if they are chosen orthonormal.

A large number of different types of wave functions can be
written in this form. Clearly included are the conventional CI
functions, in which the orbitals are fixed and only the coefficients
Ci are optimized in a variatiomal calculation and OMC functions,
in which both coefficients and orbitals are optimized. It is also
of interest that a variety of "Exteanded Hartree Fock" functions
can be expressed in this form by transformation to an appropriate
set of orthogonalized orbitals, such as the eigenfunctions of the
charge density matrix *Yo.a For spin~polarized HF, spin projected
or spin extended HF, and even spin-optimized HF fuuctions, the
rank of v° does not exceed N, and thus the wave function can be

expanded in configurations invelving not more than N orthounormal

1 . L - , . :
orbitals. ? A CI function in which all singly excited configurations



are included {sometimes cailed

alss ve cast terms

about N sc that only N optimizei orbitals
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be of interest tc compare these different types of functions

Density Matrix Components of Multi-Joufiguration Functions
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It is ciear from expressions {1

density matrix

as
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These eguations can be faken tc define the arrays

Y, (2% and (17) that the

S Or a

o Oofr 2

caponeuts for these MC functions must be expressable
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With the reintroducticn of Uin pliace of iJ,Klfor convenience,

the energy can now be written

1
=~
~+ i~

(23)



Two interpretat

e

ons of this expres:sion are possible. One is that
suggested by the discussion abova,'namely thzt the sum over t aand
1 is done first {at least couceptually} to give a density matrix
wnich hus been explicitly constructed from an zantisymmetric wave
function znd [s thus N-representable, The sum over M is then doneto
give the energy according teo Egus (13) or (16). An alternative

interpretation arises if Zhe sum over U is done first to give

C1i *

E= ] H/; C.C, (24)
T,u
Ci ¢ 25 .
Hot = ﬁ Hupu,fu (25)

Eqn {24} is the usual CI energy expression andKECI is the matrix

of the (N-electron) hamiltounian ia the b;sis of the configurationS

®. . The array P thus also prevides a way‘of constructing the CI
i

matrix from the elements of the reduced hamiltomnian matrix.

The informaticn which is contained in the array P is implicitly
present in any CI or MC calculation. If each coafiguration is
taken simply as an antisymmetrized product of spin orbitals with
ne restriction to produce S?eigenfuactions, then P is purely
combinaterial. It elements are 0, #1, 2 and are completely
determined once a numbering scheme is decided for the configurations.
1f the function is a CI involving only doubly occupied orbitals g

essentially the same is true. For functions involving unon-trivial

spin coupling, the determination of P is more difficult.
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Particular elements wilil have different values dependiag on how the

]
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to counstruct

m

wibl

spin eligenfunctiouns are chosen. It i

o
o
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corresponding to the use of spin projection operators of various
sorts, geneologlically counstructed spin eigeafuncrions, or even the
Ygpin free' approsch of Matsen and Poshusta.

Dr. Janet Del Bene has written a program to construct ¥ for
any choice of orthogonal spin eigenfuuctions. This work and

some conclusions based on it will be reported elsewhere.

Fode
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We have seen that it does not matter, except p

blyfrom a
standpoint of coavenience, if non-orthogonal spin eigenfunctions
are used,' It has beea assumed throughout, however, that the
orbitals are orthegonal. The use of non-orthogouzal orbicals

essentially invalidates the spproach being presented here, since P
then depends on orbital overlaps and will change as the orbital set
is transformed.

When elements of the CI matrix have been constructed in
practice, it has not usually been in terms of 3 reduced hamiltonian
matrix. It is of interest to nofte, however, that the number of
potentially independent elements in Es plus gé is the same as the
number of potemtially independent coulomb plus exchange integrals
in the same basis. In defining the reduced hamiltonian all the
one~-electron iuntegrals can be absorbed and need not be considered

explicitly.
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Thus far only permctational and épin syuenettry have been
considered. Other symmetries, {? behavior for an atom or point
group symmetry for a molecule, are also of interest. The con-
figurations can be limited, or single orbital products replaced
by small, fixed linear crcabinations of products to give the
desired behavior. There wil! be additional symmetry factorings of
H _ and I'°, These features can also be dealt with by appropriate
constructions of P,

Discussiég

As has been pointed out above, the ianformation necessary to
construct the array P exists implicitiy in any MC or CI calculational
scheme, The novel feature of the present sapproach is to separate
and consider explicitly various aspects of these apprcaches. Such
a separation is very useful conceptually, and may be of some aid
in computation,

The fundamental expression, on which discussion can be based,
is Eqn (23). In this equation the three agpects of the MC
approach are apparent:

1) The dependence cof the energy on the expansion
coefficients Ci’ as in any CI or MC expression.

2) The dependence on the orbitals involved, which
appears here in the reduced hamiltonian matrix. Any
transformation of orbitals will induce a transformation of

.

this matrix.
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3} The combinstorial and syametry aspects which are

contained in the coupling array F.

The determinationm of ¥ axd those relationships which depend
ot it can be done independently of the "dynamics" of a particular var-
iationally optimized fyuction. It i¢ thus more counvenlent to
examine separately aand expiicitly the structurzl aspects of the
problem. In particular, the examinarion of .these aspects in
density matrix terms represents a great simiplificacion over
implicit counsideration of complicated MC wave functions.

This approach also represents what might be called an avoidance
{rather th;n a solution) of the N-representability problem. By
formally constructing a density mattix from a wave function,
N-representsbility is assured, Certain features which will be
present if the N-representability problem can be solved then
become apparent. It is still necessary to do a variational
calculaticn, One kind of variation is the optionization of the
orbital set., One can, for example, parametrize the crthogonal
transformation from a fundamental basis set to the orbital set
in terms of the exponential of an antisymmetric matrix. The best
ways of dealing with this trausformation, particularly when the
size of the basis set is much larger than the number of orbitals

actually used, is a difficult one and needs much more attention.

This need becomes apparent in the present formulation.
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Each of these methuds involves a single orbical product. The

unctions

had

orbitals are in general uon orthogonal, but the eigen

, . i 5 s
of 3 provide an orthegonal basis for the space spanned, wvhich
can certainly not be grester thaun N in dimensioun.

- ' ~ . » . <
The rank of ¥ for such a function is 2N {cf. Ruskai, ref. 1).

o)

Since the orbital parts of the « aund p’spin spinorbitals
Ll
normally span essentially the same space, the rank of ¥

will be about N.



